If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18a^2-30=-33a
We move all terms to the left:
18a^2-30-(-33a)=0
We get rid of parentheses
18a^2+33a-30=0
a = 18; b = 33; c = -30;
Δ = b2-4ac
Δ = 332-4·18·(-30)
Δ = 3249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3249}=57$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-57}{2*18}=\frac{-90}{36} =-2+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+57}{2*18}=\frac{24}{36} =2/3 $
| X+6+x+15=102 | | (K+1)(k-1)=8 | | .5(x+18)=4(2x-6)-9x | | Y=-240(x) | | 5y^2+29y–6=0 | | 6b-8=56 | | x^2+51x-518=0 | | x+4=1.30 | | 10=24x | | 3(5x-2)=9x-12 | | -69=11x-3 | | 7a+3=5a+7 | | 11=x/4+3 | | -2x^2+76x+1444=0 | | 14=2(2x-1)=16-(2x-8) | | 3u-7=-16 | | -8(u+4)=6u+24 | | 2+z-5=-z+3-4 | | b÷7+3=10 | | 2(x-1)=5(x+4)-4 | | (13x+7)+2(13x+7)-1=180 | | -17q=5(-q+12) | | -4(17w-20)=-4(12w+20)-20 | | -1+7(-g+13)=-2g | | (x*38)^2=3x^2 | | 12r=3(-10r+14) | | 2(d+3)=14 | | 5(-12+14y)=6(10y-5) | | -4(8j+20)-20=-12j+20+20 | | -19-7(-c+19)=-c | | 6y-1=4y+3 | | -14k=2(-6k-6) |